Simplifying Complexity.

Making heads from tails is no easy task when it comes to complex thinking.  This week in CEP 812 the Think Tank sought to frame the problem of teaching complex thinking.

Our Think Tank quickly discovered that complex thinking does not have a standard and universal meaning, and to complicate matters even more, it often is used interchangeably with other terms like critical thinking and computational thinking.  As such, our first question in defining the wicked problem of teaching complex thinking became:

Why is it referred to as computational, critical, and complex thinking?

Definition aside, we then moved on to the role creativity plays in critical thinking. Invariably all of the references to complex thinking involved some sort of problem solving and cross-disciplinary approach.  Which led us to wonder:

Why does creativity play a role in complex thinking?

While these 2 questions address the complex thinking aspect of the wicked problem, neither addresses the teaching component.  Considering that the result of the design process will be a plan to address teaching complex thinking, we also framed our discussion around:

Why are classroom environments important for teaching complex thinking?

Armed with our framing questions and the informative results from last week’s survey (open image below in a new window to view details), we are all set to move into the next phase of the design process: Solutions!

cep812-complex-thinking

Also, check out my Piktochart infographic to summarize our progress to date.

Loading...

Loading…

 

Get WICKED.

It’s week 3 and CEP 812 just got wicked.  Our think tank is tackling the wicked problem of teaching complex thinking…piece of cake, right?

Complex thinking, “the ability to understand complexity” (Johnson, Adams Becker, Estrada, & Freeman, 2015), is one of many wicked problems facing the current education system.  While complex thinking is also referred to by Tharp and Entz (2003) as a component of challenging students to apply learning through activities, it is still not unanimously evident how complex thinking is defined.  What qualifies as complex? Is it based solely on creativity and problem solving?  Does it have to be cross disciplinary?  Do traditional teaching approaches support complex thinking?  Does student centered learning support complex thinking?  Does technology have to be involved?  What role does communication play?

To begin to get to the root of the problem and understand how other educators perceive complex thinking,  the following questions were sent via a Survey Monkey survey to my coworkers.  To maintain integrity of the sample, faculty and administrators serving grades 9-12 at an independent school in Western New York, the link will be provided after the sample set has responded and their responses are evaluated on Wednesday, September 21. Questions 1-12 were given a Likert scale with options of Strongly Agree, Agree, Neutral, Disagree, and Strongly Disagree.  Question 12 is an open ended response.

  1. Students learn complex thinking from traditional teaching methods.
  2. Students learn complex thinking in student centered classrooms.
  3. Lecture promotes complex thinking.
  4. Project based learning promotes complex thinking.
  5. Technology integration promotes complex thinking.
  6. Collaboration promotes complex thinking.
  7. Complex thinking can be objectively measured.
  8. Cross-disciplinary connections are essential for complex thinking to occur.
  9. Faculty use student centered learning approaches to emphasize complex thinking in the classroom.
  10. Administrators encourage the use of student centered approaches in the teaching of complex thinking.
  11. Parents are informed about student centered learning.
  12. Students respond positively to student centered learning.
  13. Complex thinking is…

Each member of the think tank is collecting similar data and with more insight on how professionals in the field understand complex thinking, we will be better able to address the working components of teaching complex thinking in a meaningful way.  Let’s do this.

References:

Johnson, L., Adams Becker, S., Estrada, V., and Freeman, A. (2015). NMC Horizon Report: 2015 K-12 Edition. Austin, Texas: The New Media Consortium.

Tharp, R., & Entz, S. (2003). From High Chair to High School: Research-Based Principles for Teaching Complex Thinking. YC Young Children,58(5), 38-44. Retrieved from http://www.jstor.org/stable/42728979

Sit Still.Listen.Repeat.

40,000.  From why the sky is blue to what’s for dinner.  40,000 is how many questions a child typically asks during the toddler years, and sadly it’s all downhill after that…

Why?  Why aren’t students asking questions in school, in life?  Berger (2014) points out that this is in part a result of an education system that asks students to sit still in class, be receptacles of information, then recite it back in due time.  In implementing Industrial Age learning strategies we have groomed students to file into place, sit in stiff uncomfortable chairs, and look to us for facts that supposedly answer some life question that was never asked of or by them.  In light of this, Berger (2014, p.49) then raises two questions of importance:

“What kind of preparation does the modern workplace and society demand of its citizens – i.e. what kind of skills, knowledge, and capabilities are needed to be productive and thrive?”

“What if our schools could train students to be better lifelong learners and better adapters to change, by enabling them to be better questioners?”

While these are most certainly wicked questions with only best answers, rather than right answers, it seems logical that fact delivery in an age of Google is not the key to becoming a productive 21st century citizen.  So how do we break the mold of sit still.listen.repeat and get students questioning again? A wicked question that Deborah Meier took head on in her design of the Central Park East schools, but what if we aren’t in the position to restructure a school from the ground up?

Start small and keep it simple.  It’s natural to look to the person at the front of a room for answers, so get rid of the front of the room.  Embrace technology. And then get rid of those static desks.

I have found that Node chairs and mobile whiteboards have gone a long way in transforming my classroom into one of collaboration, inquiry, and questioning.  Mobile desks and whiteboards allow for a fluid class dynamic and eliminate the ‘front’ of the room.  (Mobile furniture not in your future?  At least get rid of the rows.) When students are arranged in small groups, they face each other rather than the teacher, giving a natural instinct to direct discussion to their classmates.  The teacher is then free to move between groups, quickly key in to the students’ thought processes by surveying their whiteboard, and facilitate their learning.  Ready to review key concepts or have a student present their work?  Simply roll the chairs into a new configuration.  Voila! It’s a facilitated collaboration, not a dictatorship.  fullsizerender

Furthermore, not only are physical spaces important (Barret, Zhang, Moffat & Kobbacy, 2013), but also, the atmosphere for questioning is set by letting and even encouraging students to use the resources that are available – even if they want to use Google, they have to know what to search for and then apply the found facts to the problem at hand – not unlike knowing what word to find in the index of a textbook. Undoubtedly, their first search will simply yield more questions and they realize that the answer to a singular question is not the most important takeaway.

 

The next step?  Learn to ask better questions…

 

References:

Barrett, P., Zhang, Y., Moffat, J., & Kobbacy, K. (2013). A holistic, multi-level analysis identifying the impact of classroom design on on pupils’ learning. Building and Environment, 59, 678-689. doi: http://dx.doi.org/10.1016/j.buildenv.2012.09.016

Berger, W. (2014). A more beautiful question: The power of inquiry to spark breakthrough ideas. New York, NY: Bloomsbury USA.

New Shoes.

In a whirlwind of a week of the academic year and CEP 812 starting at the same, it’s all about new shoes – the physical ones that gave the students (and myself) blisters and the intellectual ones that pushed me to reframe well-structured, comfortable problems into those that are well worth the effort.

In a week of learning that was multi-faceted, let’s start at the beginning.

Problems of Practice:

How do you categorize a problem?  We looked at 3 types:

Well-structured:  These are the traditional, textbook questions that can be graded correct or incorrect in the blink of an eye – multiple choice, true/false, etc.  While these problems appear to give an indication of knowledge acquisition, they do not necessarily correlate to understanding and retention.  Thus, as educators we are encouraged to modify these problems into ill-structured problems.

Ill-Structured:  These problems are complex and require engagement and understanding to solve.  While there is an answer, there are many paths that students can create to formulate their response. These problems involve higher order thinking to synthesize responses through reading, writing, and problem solving. Dan Meyer’s  TED Talk  inspires us to re-imagine well-structured problems into more meaningful ill-structured problems.

Wicked:  These problems are those that we typically face as educators.  There are moving parts that are constantly in motion that continually change the conditions of the problem we are trying to solve.  As such, there is not one answer, but rather, simply a best answer at each specific point and time.  For example, how do I provide the most effective learning environment for a student?  This problem relies very much on the student at hand, and the physical and emotional state of the student on a specific date and time.  In teaching high school, this variable changes greatly due to the nature of adolescent life.  As such, one can only come up with a best plan, and then remain open to change as implementing the plan itself changes the variables.

Using Technology to Address Ill-Structured Problems:

In teaching chemistry, there are a number of places that well-structured problems can be transformed into more complex ill-structured problems to promote engagement, understanding and retention; however, I chose to focus on the teaching style in my classroom, which in and of itself presents an ill-structured problem.  The class (chemistry) is primarily discussion based with a “flipped classroom” implementation of textbook readings.  What then are the implications for students who have an auditory processing disorder?  In a fast-paced discussion in a room with continual ventilation (fume hoods for chemical storage) how am I best serving their learning needs?  If questions are ill-structured and students cannot simply Google an answer, then it is even more imperative that they can follow and engage in class discussions.  And more broadly, these are adolescents – rife with turmoil in so many ways. Remember being a teenager?! It’s tough, really tough! Between navigating social life, athletics, familial life, the college process, where to sit at lunch, etc., how can I possibly expect them to be fully engaged every day?  Let’s be realistic, even the most invested students have a bad day.  Add to that difficulty following oral directives, particularly in a room with continuous background noise, and straining to follow a discussion as it bounces from student to student across the room, and it’s a recipe for anxiety (Ross-Swain & Geffner, 2013).

Fortunately, working at the interface of technology, pedagogy and content (Koehler & Mishra, 2008) affords a solution and that’s where Educreations comes in to play.  This app enables me to make a screencast in which I can record examples and/or give feedback to students.  The screencast can incorporate multi-modal elements with the ability to ink over the screen to emphasize a point or solve a problem – hopefully one that is ill-structured – in real time.  Students are able to pause , ‘rewind’, and re-watch the screencast as many times as needed, and can even make their own screencast to explain it again to themselves or ask a question to the teacher.  (They can snap a picture of their assignment and incorporate it directly into the screencast.) While the ability to re-examine a classroom topic at the student’s own pace, volume setting, and environment directly enhances the learning experience of a student with an auditory processing disorder (Ross-Swain & Geffner, 2013), it also caters to those students who are struggling to understand a new topic because they are having an off day.

Check out this screencast on Educreations.  Not a fan?  Check out Seesaw!

References:

Koehler, M.J., & Mishra, P. (2008) Introducing TPCK. In AACTE Committee on Innovation and Technology(Ed.), Handbook of Technologyical Pedagogoical Content Knowledge (TPCK) (pp.3-29). New York: Routeldge.

Ross-Swain, D. & Geffner, D.S. (2013) Auditory Processing Disorder: Assessment, Management, and Treatment. San Diego: Plural Publishing, Inc.